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Abstract. We developed a simple algorithm to classify clouds based on global radiation and cloud base height measured by

pyranometer and ceilometer, respectively. We separated clouds into seven different classes (stratus, stratocumulus, cumulus,

nimbostratus, altocumulus+altostratus, cirrus+cirrocumulus+cirrostratus and clear sky+cirrus). We also included classes for

cumulus and cirrus clouds causing global radiation enhancement, and classified multilayered clouds, when captured by the

ceilometer, based on their height and characteristics (transparency, patchiness and uniformity). The overall performance of5

the algorithm was nearly 70 % when compared with classification by an observer using total sky images. The performance

was best for clouds having well-distinguishable effects on solar radiation: nimbostratus clouds were classified correctly in

100 % of the cases. The worst performance corresponds to cirriform clouds (50 %). Although the overall performance of the

algorithm was good, it is likely to miss the occurrence of high and multilayered clouds. This is due to the technical limits of

the instrumentation: the vertical detection range of the ceilometer and occultation of the laser pulse by the lowest cloud layer.10

We examined the use of brightness parameter, which is defined as a ratio between measured global radiation and modeled

radiation at the top of the atmosphere, as an indicator of clear sky conditions. Our results show that cumulus, altocumulus,

altostratus and cirriform clouds can be present when the parameter indicates clear sky conditions. Those conditions have

previously been associated with enhanced aerosol formation under clear sky. This is an important finding especially in case

of low clouds coupled to the surface which can influence aerosol population via aerosol-cloud interactions. Overall, caution is15

required when the parameter is used in the analysis of processes affected by partitioning of radiation by clouds.

1 Introduction

Clouds regulate the radiative heating of the Earth because they reflect a large share of the incoming solar radiation back to

space, and also absorb and re-emit long-wave radiation radiated by the Earth (Schneider and Dennett, 1975; IPCC, 2013). The

light scattering and absorption properties of clouds depend on their thickness and spatial distribution, but also on the size and20

phase of cloud droplets. These characteristics, in turn, vary for different types of clouds. For example, optically thick stratiform
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clouds effectively decrease the amount of solar radiation reaching the surface of the Earth, thereby cooling the climate. The

dominant impact of optically thin and transparent cirrus clouds is mainly on the outgoing long-wave radiation, leading to a

net warming effect (IPCC, 2013). Additionally, clouds alter the ratio between direct and diffuse radiation on the surface of the

Earth (Kasten and Czeplak, 1980; Calbó et al., 2001). Hence, the cloud properties largely affect the radiation budget of the25

Earth (Sinha and Shine, 1995; Loeb et al., 2009) as well as many physical and chemical processes in the planetary boundary

layer (Gu et al., 1999; Mogensen et al., 2015; Jokinen et al., 2017). Many of the cloud-related interactions and feedbacks are

not well understood, causing large uncertainties in the predictions of the future climate change (IPCC, 2013).

Shortwave global radiation comprises direct radiation coming from the direction of the Sun, and diffuse radiation coming

from all other directions due to scattering of solar radiation in the atmosphere. Under clear sky conditions, 10–20 % of global30

radiation is diffuse radiation, depending on the aerosol load in the atmosphere and time of the day. When clouds overcast the

sky, diffuse radiation is nearly equal to global radiation (Page, 2012). Additional effect related to partitioning of solar radiation

by clouds is global radiation enhancement (GRE), which means that the measured global radiation exceeds the theoretical

maximum clear sky radiation, and is associated with specific “focusing” of radiation by clouds (Pecenak et al., 2016).

Partitioning of radiation by clouds affects on ecosystem and atmospheric processes. For example, under diffuse radiation35

conditions, the photosynthesis of a forest ecosystem is more effective. Such enhancement is presumably caused by the facts

that diffuse radiation penetrates more evenly inside the canopy so that more leaves can photosynthesize efficiently, and that

photosynthetic saturation of the leaves on top of the canopy is less likely to be reached (Gu et al., 2002; Kivalov, 2018). In

cloudy conditions, the increase in gross primary production, which is a measure of ecosystem-scale photosynthesis, can be up

to 30 % compared to clear sky and clean atmosphere conditions in boreal forests (Ezhova et al., 2018).40

The presence of clouds modulates also atmospheric chemistry. For example, the production of OH, which is the most

important oxidant in the atmosphere, is reduced when clouds limit the incoming ultraviolet radiation, thereby reducing also

the oxidation of e.g. biogenic volatile organic compounds (BVOC) (Atkinson and Arey, 2003; Mogensen et al., 2011, 2015;

Hellén et al., 2018). Oxidized BVOCs form vapors that are able to contribute to the formation and growth of atmospheric

aerosol particles (Hallquist et al., 2009; Riipinen et al., 2012; Donahue et al., 2013; Schobesberger et al., 2013; Ehn et al.,45

2014; Kulmala et al., 2014b; Riccobono et al., 2014). The changes in aerosol processes additionally affect cloud condensation

nuclei (CCN) production in the atmosphere (Kerminen et al., 2012; Paasonen et al., 2013; Scott et al., 2018; Sporre et al.,

2019), altering also several cloud properties, such as their albedo and lifetime, their ability to precipitate, and cloudiness in a

more general sense (Twomey, 1977; Albrecht, 1989; Gryspeerdt et al., 2014; Rosenfeld et al., 2014). Hence, the modulations

in cloudiness affect variety of different simultaneous processes and feedbacks, and the research on these interactions requires50

accurate knowledge of different cloud types and their effects on radiation on different time scales (Hussein et al., 2009; Rannik

et al., 2013; Dada et al., 2018; Ezhova et al., 2018).

Measurements at SMEAR II (Station for Measuring Ecosystem–Atmosphere Relations) in Hyytiälä, Finland aim for com-

prehensive understanding of the ongoing processes in the atmosphere, ecosystem and the interactions between them (Hari and

Kulmala, 2005). Despite the importance of the clouds on these processes, to date the prevailing cloud types have not been iden-55
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tified. The objective of this work is to formulate a simple and inexpensive algorithm to estimate the cloud types over SMEAR

II based on its existing instruments.

Traditionally, cloud type classification has been based on human observations. However, human observations are not always

available, especially in remote locations, and the time resolution of the data is too low for many scientific applications. Thus,

automated cloud classification methods have been developed. Either data from ground or satellite instrumentation can be used60

for the classification. The equipment for this purpose include cameras, radiosondes, and different kinds of irradiance meters

and radars (Tapakis and Charalambides, 2013). The classification applied in simple models can base only on one instrument

(Duchon and O’Malley, 1999), or the algorithm can employ data from several instruments (Wang and Sassen, 2001). Ground-

based measurements provide accurate results on local variations in cloudiness, whereas satellite measurements cover large-

scale phenomena (Duchon and O’Malley, 1999; Ricciardelli et al., 2008).65

In instrumental-based cloud classification, the clouds can be classified according to e.g. the attenuation of irradiance com-

pared to theoretical clear sky values, or meteorological variables, such as temperature thresholds. Image-based classification

employs spectral and textural features of an image. For example, the tonal variation may help in distinguishing between dif-

ferent types of clouds (e.g. cirrus and cumulus), and the spatial homogeneity allows to discriminate between similar types of

clouds (e.g. cumulus and stratocumulus) (Haralick et al., 1973; Calbó and Sabburg, 2008; Heinle et al., 2010). The algorithms70

calculating the cloud occurrence can be very simple separating only clouds from the background (Cayula and Cornillon, 1996;

Long and Ackerman, 2000; Mukherjee and Acton, 2002), or sophisticated classifying different cloud types into several classes

(Calbó et al., 2001; Bankert and Wade, 2007; Ricciardelli et al., 2008). The classification can be based on exceeding linear

threshold values (Kegelmeyer Jr, 1994), or it can apply machine learning and artificial intelligence with large training sets

(Bankert and Wade, 2007; Mazzoni et al., 2007).75

The selection of a suitable method depends on the application of the results. For example, Cloudnet measurement stations,

producing cloudiness data for the needs of weather forecasting, have at least three instruments providing information of cloud

vertical structure, and ice and liquid water contents (Illingworth et al., 2007). The main instruments include dopplerized cloud

radar, ceilometer and dual-frequency microwave radiometer. The calibration and data handling processes are exact and pre-

arranged (Illingworth et al., 2007). While overall, Cloudnet provides very detailed information of clouds, for some applications80

this information is redundant. As an example, when dealing with the processes related to solar radiation, it is reasonable to

characterize clouds using solar radiation as a classification parameter. Moreover, Cloudnet stations and the instruments they

use are rare, while for example global radiation and cloud base height (CBH) are often measured routinely.

Here, we introduce an automatic method to classify clouds based on global radiation and CBH measurements. Our algorithm

is an adaptation of the work by Duchon and O’Malley (1999). Their so called “pyranometer method”, using only pyranometer85

data, was developed to classify clouds in places where no human observations were available (Duchon and O’Malley, 1999).

Even though the pyranometer method is simple and effective, its cloud type classes are rather broad (stratus, cumulus, cu-

mulus+cirrus, cirrus, clear sky, precipitation+fog, and other), and the classification was found to be in agreement with human

observations only 45 % of the time (Duchon and O’Malley, 1999). Our improved cloud type classification algorithm uses

additionally CBH data. Hence, the number of cloud type classes can be increased compared to Duchon and O’Malley (1999)90

3

https://doi.org/10.5194/amt-2020-130
Preprint. Discussion started: 8 June 2020
c© Author(s) 2020. CC BY 4.0 License.



because the clouds at different levels can be distinguished. Cloud classes in our algorithm are cumulus, stratus, strotocumulus,

nimbostratus, altocumulus+altostratus, cirrus+cirrocumulus+cirrostratus, clear+cirrus, cumulus+GRE, and Ci+GRE. Although

the algorithm is developed using the data from one measurement station, it can be applied also to other environments.

In order to illustrate the application of the new cloud classification algorithm we study the cloud statistics over Hyytiälä. In

the future, the results of this algorithm may be employed in other analyses regarding cloud-related interactions and feedbacks.95

This is possible due to the fact that the data set including ceilometer and pyranometer data from SMEAR II is ten years long,

compared to just few years’ data set of more advanced cloudiness measurements (e.g. Cloudnet), and one year of total sky

imagery from Hyytiälä.

2 Materials and methods

We develop a cloud classification algorithm, utilizing global radiation and CBH data, to identify cloud types and analyze the100

statistics pertaining to cloudiness. In Sect. 2.1 we first introduce measurement site, instruments and data set. The radiation based

parameters employed for the cloud classification are derived in Sect. 2.2, and in Sect. 2.3 we describe how cloud occurrence

can be estimated using only pyranometer data.

2.1 Site and data set

SMEAR II in Hyytiälä in southern Finland (61◦51′N, 24◦17′E, 180 m a.s.l.) is a background measurement site. The state of105

the atmosphere and ecosystem are monitored with various instruments to understand the ongoing processes, interactions and

feedbacks. The station, surrounded by 57-years-old Scots pine (Pinus sylvestris) dominated forest, was established in 1995

(Hari and Kulmala, 2005).

The main data set in this work includes data from a pyranometer and a ceilometer. The pyranometer (Middleton solar SK08

pyranometer) measures global radiation at wavelengths of 0.3–4.8 µm. The ceilometer (Vaisala CL31) detects CBHs for a110

maximum of three different cloud layers based on the back-scattering profile of a laser pulse. Its maximum measurement

height is 7 500 m. Data points with full and partial obscuration, occurring usually during rain or fog events, have been excluded

from the analysis.

The measured global radiation (Imeas) is compared to modeled clear sky radiation (Igh) to quantify how effectively clouds

block radiation. To calculate the modeled clear sky radiation, we used Solis clear sky model (Ineichen, 2008). The model is115

different from that of Duchon and O’Malley (1999), in which precipitable water was estimated based on dew point and aerosol

optical depth (AOD) was taken constant. We used Solis model because it explicitly takes into account the aerosol load in

the atmosphere. The input parameters are measured AOD at 700 nm and precipitable water. We used AOD at 675 nm and

precipitable water obtained from Aerosol Robotic Network (AERONET) data base for Hyytiälä (Holben et al., 1998). Note,

however, that the data from 2014 is found under the name “ARM Hyytiälä Finland” because in 2014 Atmospheric Radiation120

Measurement (ARM) facility of the U.S. Department of Energy had a campaign called “Biogenic Aerosols – Effects on Cloud
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Figure 1. An example of total sky images taken in Hyytiälä that were used when formulating the algorithm. Transparency, patchiness and

the lowest CBH are marked in the figures. Figure courtesy of ARM.

and Climate” (BAECC) in Hyytiälä (Petäjä et al., 2016). We used version 2 and level 2 (cloud screened and quality controlled)

AERONET data. The data are available at https://aeronet.gsfc.nasa.gov/ (last access: 04 February 2020).

In order to reduce the overlap of parameter ranges between different cloud types (Duchon and O’Malley, 1999), and to make

sure that the parameter ranges are applicable for conditions in Hyytiälä, we compared the cloud classification made by a human125

observer, using total sky images, to corresponding radiation characteristics and CBHs between 01 May and 31 July 2014 (Fig.

1). In the validation process, we used total sky images and ceilometer data from the BAECC campaign. The ceilometer used in

the campaign was also Vaisala CL31, but it was positioned about 500 m away from the standard ceilometer of SMEAR II. We

discuss the consequences of ceilometer position for cloud classification in Appendix A1 (Fig. A1).

In the cloudiness and cloud classification analysis, we used quality checked pyranometer and ceilometer data measured at130

SMEAR II in 2014 and 2016–2017. Data from 2015 was excluded because the data availability was low due to instrumental

issues of the ceilometer. The time resolution of the data was 1 min, and gaps were interpolated with the nearest value. The

interpolation was important only for intermittent measurements of precipitable water and AOD. Otherwise the data availabil-

ities of the measured variables were high during the measurement period, ca. 90 %. When conducting seasonal analysis, we

determined the seasons so that spring included March, April and May, followed by summer (June, July and August), autumn135

(September, October and November) and winter included (December, January and February).

For the cloud type classification and cloud occurrence analysis based on pyranometer measurements, we used only data

when solar zenith angle (SZA) was less than 70◦ as the pyranometer data are not reliable when the Sun is close to horizon.

Because SZA is always larger than 70◦ before 27 February and after 16 October, we included only data from March to

September so that we used only months with full data availability. However, for the cloud occurrence and CBH analysis using140

the ceilometer measurements, we used data independent of the time of day and season, because the ceilometer is not as sensitive
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to SZA as the pyranometer. We calculated the value of SZA with Solar Position Algorithm (SPA) online calculator, available

in https://midcdmz.nrel.gov/solpos/spa.html (last access: 09 January 2020).

2.2 Cloud type classification parameters

Our algorithm uses three parameters to classify clouds: transparency (TR), patchiness (PA) and measured CBH. Transparency145

is the ratio of the measured global radiation (Imeas) to the modeled clear sky radiation (Igh) averaged over a running time

interval:

TR =
〈

measured global radiation
modeled clear sky radiation

〉

21 min
=

〈
Imeas

Igh

〉

21 min
. (1)

Transparency describes how effectively clouds block solar radiation. Transparency is equal to 1 in clear sky conditions and

it approaches 0 for an overcast sky. In this work the chosen time interval is 21 min similar to Duchon and O’Malley (1999).150

The length of the time interval is based on empirical experience: the time interval should be long enough to capture the cloud

variability, but it should not be too long so that the prevailing cloud type changed within one interval.

Patchiness is the running standard deviation (σ) of scaled measured global radiation (Isc,meas):

PA = σ

(
measured global radiation× 1400 Wm−2

modeled clear sky radiation

)

21 min
= σ (Isc,meas)21 min . (2)

Patchiness determines the variability of the cloud layer. The same time window of 21 min is used. The scaling of the global155

radiation is discussed later in this section.

The third criterion is the running minimum of the lowest CBH over a 21 min interval. To assess the patchiness of cumulus

clouds, an additional parameter (TRmax) is included. TRmax is 21 min moving maximum of the relation between measured

global radiation and modeled clear sky radiation, and hence it describes the cloud free moments when cumulus clouds are

present.160

In this study, we used Solis clear sky model to calculate the amount of global radiation that would reach the surface of the

Earth in case there were no clouds (Ineichen, 2008). From the model, the obtained global radiation at ground level is

Igh = I ′0 · exp
( −τg

cosg(SZA)

)
· cos(SZA), (3)

where I ′0 is the solar flux density at the top of the atmosphere (I0) multiplied by a factor associated with AOD and precip-

itable water, τg is global total optical depth, and g is a fitting parameter related to AOD and precipitable water. The detailed165

descriptions of the parameters can be found in Ineichen (2008).

The relationship between the measured global radiation and the modeled global radiation gives the fraction of radiation that

reaches the surface of the Earth. For the cloud classification algorithm, we scaled the measured radiation because the magnitude

of the oscillations in the radiation due to clouds are different depending on the time of day. Since the amount of incoming solar

radiation is lower in the morning and evening compared to the noon, the fluctuations due to same types of clouds are higher170

around noon. We used 1400 Wm−2 for scaling because it is slightly higher than the theoretical maximum of incoming solar
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radiation. The scaling factor (s) was calculated as in Duchon and O’Malley (1999):

s=
1400 Wm−2

Igh
. (4)

We multiplied the measured global radiation by the scaling factor in order to obtain the scaled radiation:

Isc,meas = Imeas · s. (5)175

2.3 Calculating cloud occurrence from pyranometer data

We determined the cloud occurrence from the pyranometer measurements as the ratio between the measured global radiation

and modeled radiation at the top of the atmosphere (I). The radiation at the top of the atmosphere is

I = cos(SZA) · I0. (6)

We used 21 min running average of data in 1 min time resolution. When the radiation measured with the pyranometer was less180

than a certain percentage of the modeled top of the atmosphere radiation, we assumed that the data point corresponded to cloudy

conditions. For summer months, the percentage that we used was 70 %, for April 65 %, and for March and September 55 %.

We estimated the percentages separately for each month using a clear sky model with relatively high aerosol load (AOD675 nm

= 0.17). The percentages were different for different months because the position of the Sun is higher in summer than in spring

and autumn. For this analysis, we used only data from March to September to avoid errors in the measurements caused by large185

SZA.

3 Results and discussion

First, we analyzed the ceilometer and the pyranometer data to study the seasonal variation in cloud occurrence in order to

gain insight into how often clouds are observed over Hyytiälä, and what are the typical CBHs (Sect. 3.1). Second, the cloud

classification algorithm is introduced along with the evaluation of the performance of the algorithm (Sect. 3.2). We study the190

statistics of the automatically produced cloud types in Sect. 3.3. In Sect. 3.4, we discuss the use of brightness parameter as an

indicator of clear sky condition, and finally in Sect. 3.5 we compare the main findings of this work with other studies.

3.1 Cloud properties

We studied the seasonal variation of cloud occurrence measured with the ceilometer (Fig. 2a) and the pyranometer (Fig.

2b). We obtained the cloud occurrence by dividing the number of cloud observations in one month by the total number of195

data points in the month. Cloud occurrence calculated using ceilometer data (Fig. 2a) included all the data, whereas cloud

occurrence calculated using the pyranometer data (Fig 2b) included only times when SZA was less than 70◦. The ceilometer

measurements show a robust seasonal variation in cloud occurrence in Hyytiälä, with cloud occurrence being lower during

summer months (56 %) and higher during winter months (79 %) (Fig. 2a). The overall cloud occurrence was about 66 %, and
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Figure 2. The monthly average cloud occurrence observed over Hyytiälä based on (a) the ceilometer data and (b) the pyranometer data. The

pyranometer data were limited to values when SZA was less than 70◦.

from March to September it was about 55 % (Fig. 2a). Cloud occurrence calculated from the pyranometer data did not show a200

seasonal cycle, and also the cloud occurrence was higher (73 %) compared to the ceilometer measurements (Fig. 2b).

Diurnal variation of cloud observations by the ceilometer in different seasons is shown in Fig. B1. A diurnal cycle in

cloud occurrence was observed in summertime (Fig. B1b). The cloud occurrence had a maximum around 14:00, likely being

associated with the development of convective clouds. In May and September, a robust diurnal cycle was also observed whereas

in other months the variation was absent (Fig. B1a and c). We did not investigate the diurnal variation from the pyranometer205

measurements as the method is limited by SZA, and hence the observations were not distributed evenly throughout the day.

From the ceilometer data, we could retrieve the occurrence of the two-layered and three-layered clouds. The second and the

third cloud base were observed about 2–10 % and less than 1 % of the time, respectively, depending on the month (Fig. B2).

Hence, the frequency of the times when single-layered clouds were detected by the ceilometer, was approximately the same

as the observed cloudiness in total. Both the second and third cloud layer seemed to have higher frequencies of occurrence210

during summertime compared to winter, even though there were substantial differences between the years (Fig. B2). When a

multilayered cloud was observed, it was two-layered in 92 % of the cases.

To identify the most common CBHs observed over Hyytiälä, we investigated the seasonal (Fig. 3) and diurnal (Fig. B3)

variation of CBHs measured with the ceilometer. In each month, we divided every CBH record from the lowest cloud layer

into 400 m bins. We calculated the frequency of CBH records in each bin as a ratio between the number of CBH records in215
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Figure 3. The number of CBH observations, from the lowest level of the ceilometer, in each 400 m height bin in one month with respect to

the total number of observed cloud bases in that month in (a) spring, (b) summer, (c) autumn and (d) winter months. Notice the differences

in y-axes scaling.

the bin and the total number of CBH records in that month. Figure 3 shows that when a cloud base was observed, the most

frequently observed CBH was below 800 m for all months, although the relative amount of CBH records below 800 m was

higher in winter than in summer. Figure 3 also shows that in spring and summer, the CBH distribution was more dispersed, and

a second maximum at about 1 600 m was detected. The measured CBHs were most likely associated with cumulus clouds as

they were more often observed in summer (see Fig. 5 in Sect. 3.3). This is also supported by the fact that a pronounced diurnal220

cycle in CBH, with higher values in afternoon compared to morning, was measured in summer, whereas in winter no diurnal

cycle was observed (Fig. B3). In summertime, the frequently detected CBHs around 3 000–4 000 m are probably middle level

altocumulus and altostratus clouds. Overall, low clouds (CBH < 2000 m) were observed 87 % of the time when clouds were

detected, middle clouds (2000 m < CBH < 7000 m) 13 %, and high clouds (CBH > 5000 m) 1 % of the time. The limits of the

cloud level classification follow the criteria defined in Houze (1993).225

The seasonal variation of CBH distribution of all clouds, and single, two and three-layered clouds, are presented in Fig. B4.

It confirms the observation of single-layered clouds dominating the CBH distribution based on ceilometer data that we found
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also in Figs. 2 and B2, as the distribution of single-layered clouds resembles the distribution of total observed cloudiness. The

seasonal variation of the CBHs of multilayered clouds reflects the seasonal variation of the lowest cloud layer (Fig. 3).

Figure B5 displays the height differences between cloud layers in different seasons. In all the seasons, the most common230

height difference between all the layers (1st and 2nd in two-layered clouds, 1st and 2nd in three-layered clouds and 2nd and

3rd in three-layered clouds) was less than 400 m (50–70 %). Towards the higher end, the distribution decreased gradually.

The large distances between cloud layers were slightly more common in autumn and winter than in spring and summer (Fig.

B5). In cases when three cloud layers were detected, the distance between the first and the second cloud layer was usually

smaller than the distance between the second and the third cloud layer. Also, the first and the second cloud layer, in cases with235

three-layered clouds, were found more often close to each other (distance less than 400 m) than the first and the second cloud

layer in two-layered cloud cases (Fig. B5).

3.2 New cloud classification algorithm and its evaluation

The algorithm classifies clouds based on three parameters, determined in Sect. 2.2: CBH, transparency and patchiness. We

adjusted the ranges of the parameters, corresponding to different types of clouds, by constructing planes (TR,PA) for different240

types of clouds based on total sky images from Hyytiälä (Fig. 1). We took uniformly and randomly a sample of 665 total sky

image–measurement data pairs. To ensure that the middle and high clouds were represented in the analysis, we took another

sample of 320 pairs with the condition that the minimum CBH at that time was at least 2 000 m.

We first classified the clouds into cumulus, stratus, stratocumulus, nimbostratus, altocumulus, altostratus, cirrus, cirrocumu-

lus, cirrostratus or clear sky, and the corresponding transparency, patchiness and CBH were recorded. We put the transparency245

and patchiness values in the plane of parameters (TR,PA) in order to determine the regions in the plane, corresponding to

different cloud types. Some cloud types had a significant overlapping in the plane of parameters (TR,PA), and thus could not

be distinguished from each other from the point of view of their influence on solar radiation. Those we combined in more

general cloud classes (altocumulus and altostratus, cirrus, cirrocumulus and cirrostratus, and clear sky and cirrus). The clear

sky class contains also cirrus clouds because cirrus clouds are difficult to distinguish from clear sky as they are transparent and250

may have non-detectable CBH. Hence, the final cloud classes used in this study are cumulus (Cu), stratus (St), stratocumu-

lus (Sc), nimbostratus (Ns), altocumulus+altostratus (Ac+As), cirrus+cirrocumulus+cirrostratus (Ci+Cc+Cs) and clear+cirrus

(clear+Ci). Additionally, we defined separate classes for cumulus and cirrus clouds that caused global radiation enhancement

(Cu+GRE and Ci+GRE, respectively).

We created rectangular segmentations in the (TR,PA) plane based on those cloud classes, and thus gained the new parameter255

ranges for each cloud type. After that, we implemented the parameter ranges into the cloud type classification algorithm. The

whiskers inserted into Fig. 4 indicate the transparency and patchiness ranges for different cloud type classes. The CBHs and

parameter ranges of radiation characteristics for all cloud types are listed in Table 1.

If the parameters did not fit to the parameter ranges of any of the listed cloud types (Table 1), or the data were missing,

we classified the cases into separate classes based on whether the ceilometer did (“Base, no class”) or did not (“No base, no260

class”) capture a cloud base. As the ceilometer data were quality checked, the latter class contains basically data points when
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Figure 4. Transparency and patchiness ranges used as classification criteria for different cloud types (whiskers). Markers display the locations

of the maximum data point density for each cloud type.

the sky was clear but the values of other parameters did not fit to the clear sky parameter ranges, or the data were missing.

Additionally, as the field of view of the ceilometer is narrow, the class contains data points when the cloud was not in the field

of view of the ceilometer although there were clouds present.

We also examined the characteristics of the second and third cloud layer in cases of multilayered clouds as measured by265

the ceilometer. We classified these clouds based on the height of the second or third cloud base, and characteristics defined

by transparency and patchiness. We used three height classes: “Low level” (LL), “Middle level” (ML) and “High level” (HL).

If the second or third cloud base was below 2000 m, the case was classified as “Low level”, if between 2000 and 7000 m

situation was “Middle level”, and if above 5000 m the situation was “High level” (Houze, 1993). We classified the different

cloud layers separately. Hence, even though e.g. the second cloud layer was middle level cloud, simultaneously there might270

also exist low or high level cloud layers. As other cloud layers could be difficult to be detected above the first cloud layer

with the ceilometer, additional condition low level cloud layer was determined: if the difference between the 21 min moving

maximum and minimum CBH (CBHmax −CBHmin) of the lowest cloud layer was more than 1000 m, and CBHmax was less

than 2000 m, the case was considered as low level multilayered cloud (Table 1).

We divided multilayered clouds into three characteristic classes: “Multilayer uniform” (MuUni) for uniform and thick cloud275

layers such as stratus and nimbostratus, “Multilayer transparent” (MuTr) for uniform and transparent cloud layers like cirro-

stratus and “Multilayer patchy” (MuPa) for patchy clouds with varying transparency such as altocumulus. However, the actual
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Table 1. The cloud types and corresponding parameter ranges used in the algorithm to determine the different cloud types. Nr of layer refers

to the number of the cloud layer that is used as a criterion. Notice that cumulus, cirrus+cirrocumulus+cirrostratus and low level multilayered

cloud classes have multiple criteria (see also Sect. 3.2)

Cloud type CBH (m) Transparency Patchiness (Wm−2) Nr of layer

Cumulus (Cu) < 2000 0.6–0.85 & TRmax > 1 ≥ 200 1

< 2000 > 0.85 & TRmax > 1 > 0 1

Stratus (St) < 2000 < 0.4 < 100 1

Stratocumulus (Sc) < 2000 0.1–0.6 ≥ 100 1

Nimbostratus (Ns) 2000–3000 < 0.4 < 100 1

Altocumulus+Altostratus (Ac+As) 2000–5000 ≥ 0.4 < 500 1

Cirrus+Cirrocumulus+Cirrostratus ≥ 4000 0.85–1.1 50–400 1

(Ci+Cc+Cs) ≥ 4000 0.5–0.85 < 400 1

Clear+Cirrus (Clear+Ci) NaN 0.85–1.05 < 50 1

Cumulus+GRE (Cu+GRE) < 2000 > 1 & TRmax > 1 ≥ 200 1

Cirrus+GRE (Ci+GRE) ≥ 4000 > 1 < 400 1

Low level (LL) < 2000 2 or 3

CBHmax −CBHmin > 1000 m 1

& CBHmax < 2000 m

Middle level (ML) 2000–7000 2 or 3

High level (HL) ≥ 5000 2 or 3

Multilayer uniform (MuUni) < 0.5 < 120 2 or 3

Multilayer transparent (MuTt) > 0.5 < 120 2 or 3

Multilayer patchy (MuPa) > 0 > 120 2 or 3

cloud types of the second and third cloud layer could not be determined with the current algorithm. Hence, multilayered classes

rather inform of the presence of other cloud layers on top of the lowest, classified, cloud layer.

Before analyzing the cloud type data produced by the algorithm, the performance of the algorithm was investigated. To280

test the performance, a third sample of 204 total sky images was selected, and the cloud type determined through visual

inspection. These cloud types were compared with the results of the algorithm in matrix form (Table 2). The results showed

that the overall performance of the algorithm was 68.4 %. The performance depended on the cloud type. Some clouds, such as

nimbostratus, cause very distinguishable changes in solar radiation, and hence were easily determined by the algorithm, while

some other types, such as altocumulus and altostratus, cause similar changes as cirriform clouds, and were more often mixed285

by the algorithm. Indeed, the most often the algorithm mixed similar types of clouds, e.g. cumulus and stratus to stratocumulus.
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Table 2. Contingency table presenting the performance of the cloud classification algorithm compared to the cloud types determined with

visual inspection from total sky images.
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Cumulus 19 0 3 0 0 0 1 3 73

Stratus 0 28 5 0 0 0 0 1 82

Stratocumulus 0 7 10 0 0 0 0 2 53

Nimbostratus 0 0 0 4 0 0 0 0 100

Altocumulus + Altostratus 0 0 0 2 58 5 0 15 73
Cirrus + Cirrocumulus +
Cirrostratus 0 0 0 0 5 11 0 6 50

Clear + Cirrus 0 0 0 0 0 0 15 6 71

Other types 1 0 1 0 4 0 0 2 25

“Other types” includes cases when the cloud type was changing, and two types of clouds were present in the same image, or

cases when it was hard for the observer to distinguish between two similar cloud types (e.g. stratocumulus and stratus).

The data presented in the (TR,PA) plane forms an upside down facing U-shaped pattern (Fig. 4). The physical reason for the

U-shape is as follows: when the transparency is high, the patchiness may be either low or high (clear sky vs. cumulus cloud290

streets), and when the transparency is low, the patchiness is also low (stratiform clouds). There are simply no clouds with low

patchiness that would simultaneously have moderate transparency (0.6-0.8). Those transparency values are typical for cumulus

clouds which are naturally patchy.

3.3 Cloud statistics using the new cloud algorithm

The algorithm was applied to the data from 2014 and 2016–2017 from SMEAR II. Only cases when SZA was less than 70◦295

were included. Figure 5 displays the monthly occurrence of each cloud type with respect to the total number of data points in

that month. Figure 5a-d represent the classified cloud types of the lowest cloud layer detected by the ceilometer. As clear sky

cases and cases when the cloud class could not be determined are included (Fig. 5c and d), Fig. 5a-d will give the frequency

of occurrence of each cloud type month-wisely. Therefore, summing the percentages corresponding to these classes (Fig.

5a-d) monthly will give 100 %. Figure 5e and f represent the second and the third cloud layer in multilayered cloud cases.300

Overall, the most commonly observed cloud types were stratus (28 %), cumulus (26 %) and stratocumulus (18 %), which

altogether comprised approximately 70 % of clouds. Cirriform clouds were rarely observed, accounting only for about 2 % of

the classified clouds. Clear sky and cirrus cases contributed 16 % of the classified cases.
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Figure 5. Occurrence of cloud types with respect to total number of data points month-wisely. (a) Low clouds, (b) middle and high clouds,

(c) cumulus and cirrus clouds causing GRE, (d) cases when the cloud class could not be determined in situations when the ceilometer did

or did not detect a cloud base, (e) height classes of multilayered clouds, and (f) characteristic classes of multilayered clouds. Notice the

differences in y-axes scaling.

The seasonal variation of each cloud type was studied (Fig. 5). Many cloud types showed a robust seasonal variation. These

cloud types had a maximum in occurrence during summertime, although the time of the maxima differed. Stratus, altocumulus305

and altostratus, and clear and cirrus classes had maxima in occurrence in early summer in May or June, while cumulus and

stratocumulus had maxima in late summer in August. The seasonal variation of cumulus clouds causing global radiation

enhancement followed the variation of cumulus cloud occurrence. Cirriform cloud occurrence did not show a clear seasonal

variation, and the seasonal variation of cirrus clouds causing global radiation enhancement was also minor.

The relative share of “Base, no class” and “No base, no class” cases peaked in the beginning and end of the period of310

investigation (Fig. 5d). This indicates that the classification of clouds was more difficult in spring and autumn compared to

summer. This may be caused by the fact that the used total sky images were taken between 1 May and 31 July, leading to over-

representation of summertime clouds. Thus, the number of undefined cases could increase in spring and autumn. It should,

however, be noted that wintertime was not included.

Figure 5e shows that the most commonly observed multilayered cloud type was the low level class (79 %). This is in line315

with the CBH observations (Fig. B4). Multilayered clouds with middle level cloud layer were also observed often (25 %),
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whereas high level multilayered clouds were seldom observed (2 %). Overall, the relative fraction of high clouds was smaller

compared to the other cloud types (Fig. 5a and b, 2 and B2).

Multilayered clouds were characterized by low transparency: 41 % of the clouds were patchy and 38 % uniform (Fig. 5f).

Multilayered clouds were transparent in 5 % of the cases. The reason why the numbers do not sum up to 100 % is the missing320

radiation data needed for the calculation of transparency and patchiness.

When multilayered clouds were present, the lowest cloud layer was most often stratus (29 %), stratocumulus (23 %) or

cumulus (18 %). The first cloud layer was determined as low cloud in 72 % of the multilayered cloud cases. Hence, there was

typically a low cloud layer above another low cloud layer. This can also be seen in Fig. B4 and B5 as the distance between

the cloud layers was usually less than 400 m. Accordingly, the seasonal variations of multilayered uniform and multilayered325

patchy clouds follow the seasonal variations of stratiform and cumulus clouds, having the maxima in early and late summer,

respectively (Fig. 5f). The multilayered transparent cloud type did not show seasonal variation. Transparent clouds are cirriform

clouds, and nor did they show seasonal variation. The lack of seasonal variation of cirriform clouds may partially be related to

the relatively high occurrence of clear sky and cirrus cases in summertime, because also this class contains cirriform clouds as

they cannot be distinguished from the clear sky (Fig. 5b).330

The diurnal variation of cloud types show that low cumulus clouds peak in the afternoons (Fig. B6a). Similar diurnal variation

can also be seen in the frequency of low and patchy multilayered clouds (Fig. B6e and f). Stratus, nimbostratus, and altocumulus

and altostratus were more common in the morning and evening compared to noon (Fig. B6a and b). As multilayered uniform

and middle level layered clouds showed similar diurnal variation (Fig. B6e and f), those clouds were probably responsible for

the observed variation in multilayered clouds. Clear sky combined with cirrus clouds were most often observed in the morning335

(Fig. B6b). Global radiation enhancement during the presence of cumulus clouds were more common in late afternoons and

evenings compared to mornings while during the presence of cirrus clouds it took place both in the mornings and evenings

(Fig. B6c).

3.4 Brightness parameter

Brightness parameter (PB) is determined as a relation between the measured global radiation and the radiation at the top of the340

atmosphere averaged over half an hour:

PB =
Imeas

I
. (7)

The parameter has been used as a simplified measure of the prevailing cloudiness in terms of “cloudy” or “clear sky” (Kulmala

et al., 2010, 2014a; Dada et al., 2017). In Kulmala et al. (2010), the limit of clear sky was set to PB > 0.50, in Kulmala et al.

(2014a) it was PB > 0.60, and in Dada et al. (2017) it was PB > 0.70. The limit of cloudy sky in all the three articles was345

PB < 0.30.

Figure 6 demonstrates the brightness parameter values obtained when different cloud types were present. We can see that

even when the brightness parameter was above 0.7 (black line in Fig. 6), different types of clouds were present. Only stratus
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Figure 6. Obtained brightness parameter values when different types of clouds were present. The brightness parameter was calculated as

21 min running average. The values are from daytime (9:00–15:00) during the maximum growing season (from June to August). Red lines

show the median values, lower and upper edges of the boxes are 25th and 75th percentiles, and whiskers correspond to 99.3 % coverage of

the data. More extreme values are represented separately with red “+” symbol. The black line represents the limit for clear sky used e.g. in

Dada et al. (2017).

and nimbostratus were not observed with the lowest brightness parameter limit (PB > 0.5). According to our results, cumulus,

altocumulus, altostratus and cirriform clouds occurred when the brightness parameter was above the 0.6 or 0.7 limit.350

The analysis of Dada et al. (2017) was related to aerosol formation. They concluded that aerosol formation was enhanced

under clear sky conditions that were determined by the brightness parameter. Our findings indicate that clouds could be present

during those days. A possible implication is that there could be a mechanism similar to that in the tropics where aerosol particles

formed in the upper layers of the atmosphere are delivered to the surface by convective plumes that are often enhanced in the

presence of boundary layer clouds (Perry and Hobbs, 1994; Twohy et al., 2002; Waddicor et al., 2012; Leino et al., 2019;355

Lampilahti et al., 2020). Hence, cloudy cases falsely classified as clear sky might have complicated the analyses related to

ecosystem–atmosphere interactions and new particle formation, hindering the understanding of the processes occurring in the

boundary layer (Kulmala et al., 2010, 2014a; Dada et al., 2017). Our results show that a single parameter may not indicate

clear sky conditions reliably, and thus when using brightness parameter in analysis, extra care should be taken when drawing
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the conclusions. The new algorithm is an important tool in the future research regarding the radiation partitioning modified360

processes.

3.5 Discussion

Karlsson (2003), Pipatti et al. (2010), and Joro et al. (2010) reported similar frequency of cloud occurrence and yearly variations

in Finland, based on satellite and surface observations, as we found in Hyytiälä from the ceilometer measurements (Fig. 2a).

The cloud occurrence retrieved with the pyranometer method were found to be higher than those measured with the ceilometer,365

and the seasonal variation was absent (Fig. 2b). One reason for the difference between ceilometer and pyranometer results

might be the limited vertical resolution of the ceilometer, in which case some of the highest clouds would not be detected,

lowering the observed cloud occurrence. As pyranometer measures only the attenuation of solar radiation, the altitude of the

cloud does not affect its performance. However, this explanation is improbable because the cloud occurrence estimated using

the pyranometer method gave higher values than those found in the literature. Furthermore, the several studies mention the370

capability of ceilometers to detect clouds reliably, though their field of view is narrow, and performance is better with low

clouds (Rodriguez, 1998; Kalb et al., 2004).

In Fig. 2, the cloud occurrence from the ceilometer observations contained also nighttime data points contrarily to the

pyranometer data which were filtered by SZA. When only daytime (9:00-15:00) data from the time when SZA was less than

70◦ were used in both methods, the difference between the calculated cloud occurrences was reduced slightly (Fig. B7). The375

cloud occurrence estimated from the ceilometer measurements increased, presumably because the cloud occurrence had a

maximum during daytime (Fig. B1). Additionally, the cloud occurrence from the pyranometer method decreased, implicating

that the pyranometer method overestimated the cloudiness when data from early mornings and evenings were included, despite

the filtering with SZA. Due to Finland’s northern location, SZA is high throughout the year compared to locations closer to the

Equator. Hence, as the pyranometer method is sensitive to SZA, the most reliable results are obtained during the hours when380

the Sun is at the highest position, especially in summertime when cloud occurrence had a diurnal cycle (Fig. B1). Moreover,

as shown also in Fig. 6, the simple limits set for determining cloudiness may not be efficient in all cases.

The cloud occurrence by the pyranometer was also modulated by the averaging over a 21 min time window. Thereby

also cloudless data points might have been considered as cloudy whereas the ceilometer separated clear and cloudy periods.

However, the best practice to separate between clear and cloudy cases depends on the application. For example, if the objective385

is to quantify albedo, it is reasonable to rely on ceilometer data. Yet, if the objective is to study the effect of clouds generally

on the ecosystem, pyranometer data averaged over 21 min are more appropriate in describing the integrated effect of changing

light conditions on plants.

Despite the good agreement with the frequency of the cloud occurrence with values found in other studies, we are likely

to miss the occurrence of the second and third cloud layer (Fig. B2). Costa-Surós et al. (2013) found similar occurrence390

of multilayered clouds in Girona, Spain, using identical ceilometer. They compared their results with observations from the

nearby airport, and noticed that the ceilometer overestimated the occurrence of single-layered clouds. They hypothesized that

it might be due to the occultation of the laser pulse by the first cloud layer, and the fact that the vertical resolution of the
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ceilometer was too low to detect all high clouds. The occultation by the first cloud layer might be an important phenomenon in

Hyytiälä where low and stratiform clouds were frequently observed (Fig. 5). Other studies have also shown higher frequencies395

of multilayered clouds (Wang and Rossow, 1995; Wang et al., 2000; Li et al., 2015), and differences in detection of cloud

layers depending on the method (Wang et al., 1999, 2000; Rossow et al., 2005; Rossow and Zhang, 2010). Additionally, when

multilayered clouds were observed, they predominately were two-layered, having two low cloud layers on top of each other

(Fig. B4). Comparing the results with previous publications, this indicates that we miss middle and high clouds (Rossow et al.,

2005; IPCC, 2013; Li et al., 2015).400

The high contribution of low single-layered clouds also modulates the observed CBHs. Joro et al. (2010) investigated cloudi-

ness in Finland by combining satellite and ceilometer data. They found that in February low clouds dominated the CBH distri-

bution while in August there was a second maxima around 2 500 m. We found a similar second maximum in April, May and

June but in August the distribution decreased towards the end of higher CBHs (Fig. 3 and B4). The second maximum that we

found was around 1 600 m, i.e. at lower altitude compared to results by Joro et al. (2010). However, Joro et al. (2010) reported405

results from only two months whereas we had data from three years. Despite the high frequency of low clouds, our findings

produce the distribution of CBHs similar to Wang and Rossow (1995) and Wang et al. (2000) who reported averaged CBH

distribution of satellite and rawinsonde, respectively, data from many stations.

Our observation that there is often a low level cloud layer on top of low clouds explains the small difference between cloud

layers (Fig. B5). Wang and Rossow (1995) reported separation distances between cloud layers. They found that most often the410

separation distance was about 1 km whereas we found that the distance between two consecutive cloud layers was about 400

m. However, the results are not completely comparable due to different data analyzing procedures.

The cloud classification algorithm was able to produce the correct cloud type in about 70 % of the cases (Table 2). When other

types of clouds than those that are classified by the algorithm were excluded, the performance was up to 84 %. The performance

was better with clouds having distinguishable effects on radiative conditions. For example, very opaque nimbostratus clouds,415

the algorithm identified correctly in 100 % of the cases. The least accuracy was obtained with cirriform clouds (50 %). This

may be caused by the weaker detection of the high clouds by the ceilometer.

The performance of our algorithm was significantly better compared to the 45 % agreement of the original algorithm by

Duchon and O’Malley (1999), and 45 % agreement of an other algorithm employing also solar radiation measurements (Calbó

et al., 2001). Moreover, when Calbó et al. (2001) reduced the number of cloud classes from nine to five, the classifier reached420

58 % agreement with human-observed cloud classes. The performance of the new algorithm was approximately similar to the

average performance of the reviewed cloud classification algorithms in Tapakis and Charalambides (2013). Our simple algo-

rithm is based on measurements by two common instruments: pyranometer and ceilometer, and hence the good performance

compared also to other, more sophisticated or expensive methods, is remarkable.

We found that low clouds were frequently observed (Fig. 5). When comparing the results with surface observations from425

Finland, we found that the algorithm produced approximately a similar frequency of occurrence and diurnal variation (Fig. 5

and B6) as the observations in Eastman and Warren (2014) and Climatic Atlas of Clouds Over Land and Ocean (available online

at https://atmos.uw.edu/CloudMap/, last access: 10 January 2020; method explained in Hahn and Warren (2007)). However,
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the frequency of middle, and especially high cirriform clouds, were up to tenfold smaller compared to the values in Climatic

Atlas of Clouds Over Land and Ocean (Fig. 5b). This can partly be explained by the fact that our clear sky class contained430

also cirrus cloud cases. The better accuracy for low clouds was, however, likely caused by the limitations of the ceilometer to

observe high clouds as discussed above. Moreover, Li et al. (2015) reported that high and middle clouds often coexist with

other types of clouds. According to their results, at 60◦N high clouds are often observed together with low or middle clouds.

We could not capture cases with many cloud layers because of the occultation of the laser pulse. When studying our results,

high level multilayered clouds were seldom observed but rather two low cloud layers coexisted (Fig. 5).435

Many cloud types showed seasonal variation, having a maximum in summertime, e.g. cumulus clouds peaking in late sum-

mer (Fig. 5). The algorithm reproduced the seasonal variation of clouds reported in Climatic Atlas of Clouds Over Land and

Ocean. However, as our analysis does not cover winter months, some possible discrepancies were observed: according to

Climatic Atlas of Clouds Over Land and Ocean, the occurrence of nimbostratus has a minimum in summertime, and the oc-

currence of stratus has a maximum in autumn. In our study, nimbostratus showed relatively constant frequency of occurrence440

from April to August but was almost absent in March and September. Stratus had a maximum in June but the differences in

frequency with August and September were minor (Fig. 5a). Hence, we cannot conclude the deviation from the cloud obser-

vations reported in Climatic Atlas of Clouds Over Land and Ocean, and overall the performance of the simple algorithm was

very good.

4 Conclusions445

The present study included a formulation of a cloud type classification algorithm, and investigation of cloud properties at

SMEAR II measurement site in Hyytiälä, Finland. The overall cloud occurrence measured by the ceilometer was in agreement

with the reported values in literature, though the frequency of single-layered clouds were likely overestimated, and the occur-

rence of middle and high clouds underestimated. We hypothesize that this is caused by the facts that the vertical maximum

measurement height of the ceilometer did not allow it to detect all the high clouds, and that the occultation of the laser pulse450

by the lowest cloud layer prevented the observation of other cloud layers.

The developed cloud classification algorithm is based on two variables measured continuously at the station: global radiation

and CBH. Despite the simplicity of the algorithm, it can identify seven different cloud types along with classification of

multilayered clouds based on their base height and characteristics (uniform, transparent or patchy). The overall performance

of the algorithm was almost 70 %, indicating a good ability to distinguish cloud types observed over a boreal forest. The455

algorithm may, however, be utilized also in other environments. Because the algorithm is based on attenuation of solar radiation,

the performance is better with cloud types that have a distinguishable impact on radiative conditions on the Earth, such as

nimbostratus. We are confident that the algorithm is able to reproduce the cloud types rather reliable in common situations,

though it is probable that it does not reproduce all the high and multilayered clouds due to the limitations of the performance

of the ceilometer, as discussed above. Indeed, we showed that low and optically thick stratiform and cumulus clouds occurred460

frequently, indicating the high probability for occultation of the laser pulse.
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The brightness parameter is defined as a ratio between the measured global radiation and calculated radiation at the top of

the atmosphere, and has been used as an indicator of clear sky or presence of clouds. We found that cumulus, altocumulus,

altostratus and cirriform clouds were present when brightness parameter indicated clear sky conditions. Thus, the studies

defining clear sky cases based on brightness parameter, may be biased. The new algorithm may be utilized in the future to465

distinguish clear sky conditions in a more reliable way.

As the focus of this study was in the development of the algorithm, we used data only from three years. The measurements

of the CBH and the global radiation at SMEAR II have been ongoing since 2008, and therefore the analysis can easily be

extended in the future for longer time periods and different data sets. The current algorithm is the first one indicating the

prevailing cloud types at SMEAR II, and we encourage to use it in studies related to the boundary layer interactions involving470

radiation processes and clouds.

Data availability. The used data measured at SMEAR II can be accessed with Smart-SMEAR online tool (https://avaa.tdata.fi/web/smart,

last access: 09 January 2020, (Junninen et al., 2009)). AOD and precipitable water were obtained from AERONET data base are available

at https://aeronet.gsfc.nasa.gov/ (last access: 04 February 2020, (Holben et al., 1998)). Total sky images are available at https://adc.arm.gov/

discovery/#v/results/s/fsite::tmp (last access: 11 March 2020, (Petäjä et al., 2016)). The cloud classification produced in this study is available475

upon request from the first author at ilona.ylivinkka@helsinki.fi.
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Appendix A: Materials and methods

A1 Site and data set

When comparing the performance of the cloud algorithm using SMEAR II and ARM ceilometers, the results are similar on a

daily scale (Fig. A1). However, the distance between the ceilometers led to different results if data from certain moments of time480

were examined. Thus, the classification algorithm developed with one instrument is also applicable with another instrument.
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Figure A1. Comparison of the frequencies of the produced cloud types with the ceilometer of SMEAR II (blue) and ARM campaign (red)

during four random days. The frequencies were obtained by dividing the number of cloud type records by the total number of data points in

the day. The abbreviations of the cloud types are found in Table 1. Note the different limits of the y-axes.
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Appendix B: Results and discussion

B1 Cloud properties
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Figure B1. Diurnal variation of the cloud occurrence in (a) spring, (b) summer, (c) autumn and (d) winter months. The figure contains data

from the lowest cloud layer measured with the ceilometer. The number of cloud observations was divided by the total number of data points

in the certain hour to obtain the relative cloud occurrence.
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Figure B2. Monthly average occurrence of (a) the second and (b) the third cloud layer over Hyytiälä. Note the different limits of the y-axes.
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Figure B3. Hourly averaged CBH of the lowest cloud layer from (a) spring, (b) summer, (c) autumn and (d) winter months. Before calculating

the hourly averages, the data from all three years was first separated month wisely.
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Figure B4. The frequency of single-layered clouds (a,d,g,j), two-layered clouds (b,e,h,k), and three-layered clouds (c,f,i,l). The CBH records

of one season were divided into 400 m bins, and the frequencies were obtained by dividing the number of CBH records in each bin by the

total number of CBH records in the season. Figures (a-c) represent spring, (d-f) summer, (g-i) autumn and (j-l) winter. Note the different

limits of the y-axes.
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Figure B5. Distribution of the height difference between cloud layers. Blue represents the difference between the lowest and the second

cloud layer in two-layered clouds, red similarly but in three-layered clouds, and yellow represents the difference between the second and the

third cloud layer. (a) Spring, (b) summer, (c) autumn and (d) winter.
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B2 Cloud statistics using the new cloud algorithm
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Figure B6. Diurnal variation of clouds types. (a) Low clouds, (b) middle and high clouds, (c) height classes of multilayered clouds, (d)

characteristic classes of multilayered clouds, (e) cumulus and cirrus clouds causing GRE, and (f) cases when cloud class could not be

determined in situations when the ceilometer did or did not detect a cloud base. The explanations of the abbreviations of the cloud classes

are provided in Table 1. Notice the differences in y-axes scaling.
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B3 Discussion485
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Figure B7. Monthly average cloud occurrence observed in Hyytiälä based on (a) the ceilometer and (b) the pyranometer measurements.

Daytime (9:00–15:00) values from March to September when SZA was less than 70◦ were used. The number of cloud observations was

divided by the total number of data points in one month to obtain the cloud occurrence. The occurrence estimated from the ceilometer

measurements (64 %) was lower compared to the occurrence estimated from the pyranometer data (71 %).
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